
Journal of Global Optimization 27: 399–410, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

399

Improved Approximation Algorithms for MAX
n
2-DIRECTED-BISECTION and MAX
n
2-DENSE-SUBGRAPH

DACHUAN XU1, JIYE HAN1, ZHENGHAI HUANG1 and LIPING ZHANG2

1Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese
Academy of Sciences, P.O. Box 2734, Beijing 100080, P.R. China (e-mail: xudc@lsec.cc.ac.cn,
jiyehan@sina.com, zhhuang@sina.com)
2Department of Mathematical Sciences, Tsinghua University, Beijing 100084, P.R. China (e-mail:
lzhang@math.tsinghua.edu.cn)

(Received 15 August 2000; accepted in revised form 20 March 2003)

Abstract. We consider the MAX n
2 -DIRECTED-BISECTION problem, i.e., partitioning the vertices

of a directed graph into two blocks of equal cardinality so as to maximize the total weight of the
edges in the directed cut. A polynomial approximation algorithm using a semidefinite relaxation with
0.6458 performance guarantee is presented for the problem. The previous best-known results for ap-
proximating this problem are 0.5 using a linear programming relaxation, 0.6440 using a semidefinite
relaxation. We also consider the MAX n

2 -DENSE-SUBGRAPH problem, i.e., determine a block of
half the number of vertices from a weighted undirected graph such that the sum of the edge weights,
within the subgraph induced by the block, is maximized. We present an 0.6236 approximation of the
problem as opposed to 0.6221 of Halperin and Zwick.

Key words: MAX n
2 -DIRECTED-BISECTION, MAX n

2 -DENSE-SUBGRAPH, Polynomial-time
approximation algorithm, Semidefinite programming.

1. Introduction

Given a directed graph G = (V ,A), a weight function w : A → R+ (if (i, j) /∈ A,
then wij = 0), a directed cut in G is defined to be the set of arcs leaving some
vertex subset S (we denote it by δ̃(S)). The maximum directed cut problem (MAX
DICUT) is that of finding a directed cut δ̃(S) with maximum total weight. In this
paper, we consider a version of MAX DICUT (MAX n

2 -DIRECTED-BISECTION
or MDB), and it is required to find a directed cut δ̃(S) having maximum weight

over all cuts δ̃(S) with |S| = n

2
. In the MDB problem, n = |V | is assumed to be

even.
MAX DICUT is well-known to be NP-hard and so is MAX n

2 -DIRECTED-
BISECTION. This means that one should not expect to find a polynomial time al-
gorithm for solving it exactly. Therefore many experts are interested in developing
polynomial time approximation algorithms for MDB. A (randomized) algorithm

400 D. XU ET AL.

for the maximization problem is called (randomized) r-approximation algorithm,
where 0 < r ≤ 1, if it outputs a feasible solution with its (expected) value at least
r times the optimum value for all instances of the problem.

Papadimitriou and Yannakakis [15] developed an approximation algorithm for
MAX DICUT with an approximation ratio of 0.25. Using a novel technique of
rounding semidefinite programming (SDP) relaxations, Goemans and Williamson
[8] worked out an algorithm solving MAX DICUT approximately within a factor
of 0.796. A bit latter Feige and Goemans [3] developed an algorithm for MAX
DICUT with a better approximation ratio of 0.859. Using a method of rounding
linear relaxations, Ageev et al. [1] developed an 0.5-approximation algorithm for
MAX DICUT with given sizes of parts. Halperin and Zwick [9] improved this
result to 0.6440 for MDB.

We also consider the MAX n
2 -DENSE-SUBGRAPH problem (DSP), i.e., de-

termine a block of half number vertices from a weighted undirected graph such
that the sum of the edge weights, within the subgraph induced by the block, is
maximized. For DSP, Ye and Zhang [18], using a new SDP relaxation, obtained
an improved 0.586 performance guarantee from 0.5 of Feige and Seltser [6] and
Goemans [7]. Halperin and Zwick [9] improved this result to 0.6221.

SDP relaxations have been successfully applied to various graph optimization
problems [2–11], [16–19]. Combining the previous various techniques, i.e., relax-
ation of integer programs into semidefinite programs (cf. [12]), mapping (cf. [3]),
outward rotations (cf. [14, 17, 19]), random hyperplane rounding (cf. [2, 8]), linear
randomized rounding (cf. [9]), and swapping (cf. [16]), we obtain the performance
guarantee 0.6458 for MDB and 0.6236 for DSP.

In the following section, we present the algorithm of Halperin and Zwick [9]
first, and then introduce the new idea used in this paper. In Sections 3 and 4, we
give the performance guarantee for MDB and DSP, respectively. Some discussions
are given in Section 5.

2. Halperin-Zwick Algorithm and Our Improved Algorithm

Since our algorithm and analysis closely follows that of Halperin and Zwick
[9], we first review the Halperin and Zwick method, and then proceed with our
improved method.

By introducing a “reference” binary variable x0, the MDB problem can be
formulated as the following 0 − 1 integer program

w∗ := max
1

4

∑
(i,j)∈A

wij (1 + x0xi − x0xj − xixj)

s. t.
n∑

j=1

x0xj = 0

x2
j = 1, j = 0, 1, · · · , n,

(2.1)

IMPROVED APPROXIMATION ALGORITHMS 401

where i ∈ S if and only if xi = x0 for i = 1, 2, · · · , n.
Using the “triangle inequalities”, they introduce a relaxation of (2.1) into a

semidefinite program of the following form:

wSDP := max
1

4

∑
(i,j)∈A

wij (1 + v0 · vi − v0 · vj − vi · vj)

s. t.
∑

1≤i,j≤n

vi · vj = 0

vi · vj + vi · vk + vj · vk ≥ −1, 0 ≤ i, j, k ≤ n

−vi · vj − vi · vk + vj · vk ≥ −1, 0 ≤ i, j, k ≤ n

−vi · vj + vi · vk − vj · vk ≥ −1, 0 ≤ i, j, k ≤ n

vi · vj − vi · vk − vj · vk ≥ −1, 0 ≤ i, j, k ≤ n

||vj || = 1, vj ∈ Rn+1, j = 0, 1, · · · , n.

(2.2)

Obviously, (2.2) is a relaxation of (2.1), so that wSDP ≥ w∗. Notice that by the con-
straints of the above program, ||∑n

i=1 vi ||2 = ∑
1≤i,j≤n vi · vj = 0, and therefore∑n

i=1 vi = 0. For i ≥ 1, the vector vi corresponds to the vertex i in the graph, and
the vector v0 will be a special vector that will break the symmetry in the MDB.

For any U ⊂ V , denote the total weights within the directed cut δ(U) as w(U),
that is:

w(U) :=
∑

(i,j)∈A,i∈U,j∈V \U
wij .

They present a generic approximation algorithm as follows. Here, we revise slightly
their algorithm on some parameters (cf. [9] and [11]).

Halperin-Zwick Algorithm

Step 0. Initialization: Choose parameters −1 ≤ b ≤ 1, 0 ≤ c, a rotation coef-
ficient 0 ≤ ρ ≤ 1, a probability 0 ≤ ν ≤ 1, and a tolerance ε > 0. Let
µ = α + c(bβ1 + β2). (The meaning of these parameters is explained
later.)

Step 1. SDP Solving: Solve (2.2) and obtain the vectors v0, v1, · · · , vn.
Step 2. Rotating: Rotate the vectors v0, v1, · · · , vn into new unit vectors w′

0, w′
1,

· · · , w′
n such that w′

i · w′
j = ρ(vi · vj).

Step 3. Randomized Rounding: Repeat
(a) Choose a random vector r and let S = {i ≥ 1 : sgn(w′

i · r) =
sgn(w′

0 · r)} and T = V − S, where sgn(x) = 1 if x ≥ 0, and −1
otherwise.

(b) With probability ν override the choice of S made above, and for each
i ∈ V , put i in S, independently, with probability (1 + v0 · vi)/2, and
in T , otherwise.

402 D. XU ET AL.

(c) Let z = w(S)

w∗ + bc
|S|
n

+ c
|S||T |

n2
.

Until z ≥ (1 − ε)µ.
Step 4. Vertex Swapping: Using the random algorithm, correct S to a set S̃ of

size n
2 .

The randomized rounding can be derandomized (cf. [13]). The new algorithmic
contributions in this paper are as follows. We use the idea of “mapping” the optimal
vectors before performing the “rotation”. This idea was previously used by Feige
and Goemans [3] for Max 2-SAT and Max directed Cut. Feige and Langberg [4]
also used the technique for Max-k-Vertex Cover. We replace Step 2 of Halperin-
Zwick algorithm by
Step 2. Mapping and Rotating: Map vi to a vector wi depending on v0 and vi .

Let w0 := v0. Then rotate the vectors w0, w1, · · · , wn into new unit
vectors w′

0, w′
1, · · · , w′

n such that w′
i · w′

j = ρ(wi · wj).
And we denote the improved algorithm as Algorithm 2.1.

Feige and Goemans [3] introduce the mapping of the following form. Map any
vector vi to a vector wi , coplanar with v0, on the same side of v0 as vi is, and
which forms an angle with v0 equal to f (θi) for some function f , where θi is the
angle between v0 and vi . They impose that f (π − θ) = π − f (θ) to guarantee
that the nodes of S are treated in the same manner as the nodes of V \ S. The
original scheme of Goemans and Williamson [8] corresponds to f0(θ) = θ . Set
f1(θ) = π

2 (1 − cos(θ)). And letting f (θ) be a convex combination of f0(θ) and
f1(θ), i.e.,

f (θ) = f (θ; η) := ηθ + (1 − η)
[π

2
(1 − cos(θ))

]
, (2.3)

where η ∈ [0, 1] is a parameter and will be specified later in the analysis of the
algorithm.

In the numerical computations, given θi , θj and vi · vj , we need to be able to
compute the angle between wi and wj in order to compute the probability. This can
be done by using the cosine rule for spherical triangles. In particular, we have that

wi · w0 = vi · v0;
vi · vj = cos(θi) cos(θj) + cos(θ̃) sin(θi) sin(θj), (2.4)

wi · wj = cos f (θi) cos f (θj) + cos(θ̃) sin f (θi) sin f (θj),

where θ̃ denotes the angle between the planes defined by (v0, vi) and (v0, vj). This
allows the determination of the angle between wi and wj . From (2.4), we have

wi · wj = cos f (θi) cos f (θj) + vi · vj − cos(θi) cos(θj)

sin(θi) sin(θj)
sin f (θi) sin f (θj).

IMPROVED APPROXIMATION ALGORITHMS 403

3. Approximation of MDB

Since the random algorithm makes the analysis more complicated, we prefer to the
following greedy algorithm for MDB in the vertex swapping procedure.
Step 4. Vertex Swapping: Let S̃ = S. Do one of the following two cases:

If |S̃| ≥ n

2
, for each i ∈ S̃, let ζ(i) = ∑

(i,j)∈A, j∈V \S̃ wij and S̃ :=
{i1, i2, · · · , i|S̃|}, where ζ(i1) ≥ ζ(i2) ≥ · · · ≥ ζ(i|S̃|). Then, remove ver-

tex i|S̃| from S̃ and reassign S̃ := {i1, i2, · · · , i|S̃|−1}. Repeat this swapping

procedure till |S̃| = n

2
.

If |S̃| <
n

2
, then for each i ∈ V \ S̃, let ζ(i) = ∑

(j,i)∈A, j∈S̃ wji and

V \ S̃ = {i1, i2, · · · , i|V \S̃|}, where ζ(i1) ≥ ζ(i2) ≥ · · · ≥ ζ(i|V \S̃|). Then,

add node i|V \S̃| to S̃ and reassign V \ S̃ := {i1, i2, · · · , i|V \S̃|−1}. Repeat

this swapping process till |S̃| = n

2
.

Clearly, the construction of bisection S̃ guarantees that

Lemma 3.1.

w(S̃) ≥




n/2

|S| w(S) if |S| ≥ n

2
,

n/2

n − |S|w(S) if |S| <
n

2
.

Given a vector r drawn uniformly from the unit sphere, we know by the linearity
of expectation that (cf. [8])

E[w(S)|ν = 0] =
∑

(i,j)∈A

wij · Pr[sgn(w′
i · r) = sgn(w′

0 · r) = −sgn(w′
j · r)]

=
∑

(i,j)∈A

wij ·
[

1 − 1

2π
(arccos(w′

i · w′
0) + arccos(−w′

j · w′
0)

+ arccos(−w′
i · w′

j))

]

=
∑

(i,j)∈A

wij ·
[

− 1

2π
(arccos(ρ cos f (θi)) − arccos(ρ cos f (θj))

− arccos(ρ(wi · wj)))

]
.

For given η, ρ, ν ∈ [0, 1], let

α = α(η, ρ, ν) := min
(x,y,z)∈F

(1 − ν)h0(x, y, z) + νh1(x, y, z)

1

4
(1 + cos x − cos y − cos z)

404 D. XU ET AL.

where

h0(x, y, z) = − 1

2π
(arccos(ρ cos f (x)) − arccos(ρ cos f (y))

− arccos(ρg(x, y, z))),

g(x, y, z) = cos f (x) cos f (y) + cos z − cos x cos y

sin x sin y
sin f (x) sin f (y),

h1(x, y, z) = (1 + cos x)(1 − cos y)

4
,

F :=




(x, y, z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


 1 cos x cos y

cos x 1 cos z

cos y cos z 1


 � 0,

cos x + cos y + cos z ≥ −1,

− cos x − cos y + cos z ≥ −1,

− cos x + cos y − cos z ≥ −1,

cos x − cos y − cos z ≥ −1,

0 ≤ x, y, z ≤ π.




.

Then, we have the following lemma:

Lemma 3.2. The expectation of w(S) of Algorithm 2.1 satisfies the following in-
equality

E[w(S)] ≥ α · wSDP ≥ α · w∗.

If ν = 0, we have by the linearity of the expectation that

E[|S|] =
n∑

i=1

Pr{sgn(w′
i · r) = sgn(w′

j · r)}

=
n∑

i=1

(
1 − arccos(w′

0 · w′
i)

π

)

=
n∑

i=1

(
1

2
+ 1

π
arcsin(ρ(w0 · wi))

)
,

(3.1)

E[|S||T |] =
∑
i<j

Pr{sgn(w′
i · r) 	= sgn(w′

j · r)}

=
∑
i<j

arccos(w′
i · w′

j)

π

=
∑
i<j

arccos(ρ(wi · wj))

π
.

(3.2)

IMPROVED APPROXIMATION ALGORITHMS 405

If ν = 1, we have (cf. [9])

E

[|S|
n

]
= 1

n

n∑
i=1

Pr{i ∈ S} = 1

2
, (3.3)

E

[|S||T |
n2

]
= 1

n2

∑
i,j

Pr{i ∈ S, j ∈ T } ≥ 1

4
− 1

2n
. (3.4)

For given η, ρ ∈ [0, 1], let

τ1 = min
0≤x≤π

arcsin(ρ) − arcsin(ρ cos f (x))

1 − cos x
, (3.5)

β = 2

π
[arccos(ρ) + τ1], (3.6)

τ2 = τ2(η, ρ) := min
(x,y,z)∈F

arccos(ρg(x, y, z)) − arccos(ρ)

1 − cos z
, (3.7)

γ = 2

π

[
arccos(ρ) + τ2 − arccos(ρ)

n

]
. (3.8)

From (3.1)–(3.8) and Lemma 1 of [11], we have the following lemma:

Lemma 3.3. Let

β1 =



(1−ν)β+ν

2 if b ≥ 0,

(1−ν)(2−β)+ν

2 otherwise;
and

β2 = (1 − ν) · γ

4
+ ν ·

(
1

4
− 1

2n

)
.

Then, Algorithm 2.1 yields S satisfying the following inequalities:

E

[
b
|S|
n

]
≥ bβ1,

E

[|S||T |
n2

]
≥ β2.

406 D. XU ET AL.

Define a new random variable as

z(b, c) := w(S)

w∗ + bc
|S|
n

+ c
|S||T |

n2
, −1 ≤ b ≤ 1, c ≥ 0. (3.9)

For MDB, we set b = 0 which implies that we needn’t compute β1 in this section.
Then we have

E[z(c)] ≥ α + cβ2.

Lemma 3.4. If random variable z(c) fulfills its expectation, i.e., z(c) ≥ α + cβ2,
then

w(S̃) ≥ R(η, ρ, ν, c) · w∗, (3.10)

where

R(η, ρ, ν, c) =




2(
√

c(α + cβ2) − c) if 1 ≤
√

α + cβ2

c
≤ 2,

min{α + cβ2 − c,
1

2
(α + cβ2)} otherwise.

Proof. Suppose that

w(S) = λw∗ and |S| = δn.

Note that δ ∈ [0, 1]. It follows from z(c) ≥ α + cβ2 that

λ ≥ α + cβ2 − 4cδ(1 − δ). (3.11)

Now we consider two possibilities, δ ≥ 1
2 and δ ≤ 1

2 . From Lemma 3.1, (3.11), and
simple calculus, we obtain (3.10) (cf. [18]).

Finally, we solve the maximization problem

R = max R(η, ρ, ν, c)

s.t. 0 ≤ η, ρ, ν ≤ 1
c ≥ 0.

(3.12)

We have played with Matlab 6.0 and find R = 0.6458 when η = 0.64, ρ = 0.96,
ν = 0.06, and c = 4.6456. At this case, α = 0.8247, γ = 0.9183, and β2 =
0.2308. Together with Lemma 3.4 and Frieze and Jerrum [5]’s analysis, we have
the final result:

Theorem 3.5. The worst-case performance ratio of Algorithm 2.1 for the MDB
problem is at least 0.6458 for sufficiently large n.

IMPROVED APPROXIMATION ALGORITHMS 407

4. Approximation of DSP

By introducing a “reference” binary variable x0, the DSP problem can be for-
mulated as the following 0 − 1 integer program

w∗ := max
1

4

∑
(i,j)∈A

wij (1 + x0xi + x0xj + xixj)

s. t.
n∑

j=1

x0xj = 0

x2
j = 1, j = 0, 1, · · · , n,

(4.1)

where i ∈ S if and only if xi = x0 for i = 1, 2, · · · , n.
Same as (2.2), we can get the SDP relaxation of (4.1). Then apply Algorithm

2.1 for the SDP relaxation of (4.1).
The detailed greedy algorithm for DSP is as follows.

Step 4. Vertex Swapping: Let S̃ = S. Do one of the following two cases:

If |S̃| ≥ n

2
, for each i ∈ S̃, let ζ(i) = ∑

j∈S̃ wij and S̃ := {i1, i2, · · · , i|S̃|},
where ζ(i1) ≥ ζ(i2) ≥ · · · ≥ ζ(i|S̃|). Then, remove vertex i|S̃| from S̃

and reassign S̃ := {i1, i2, · · · , i|S̃|−1}. Repeat this swapping procedure till

|S̃| = n

2
.

If |S̃| <
n

2
, arbitrarily add

n

2
− |S̃| vertices from outside of S̃ into S̃.

For any U ⊂ V , we redefine w(U) in this section as follows. Denote the total
weights within the subgraph induced by U as w(U), that is, w(U) := ∑

i<j,i,j∈U wij .

Clearly, the construction of bisection S̃ guarantees that (cf. [11])

Lemma 4.1.

w(S̃) ≥




n
2

(
n
2 − 1

)
|S|(|S| − 1)

w(S) if |S| ≥ n

2
,

w(S) if |S| <
n

2
.

For given η, ρ, ν ∈ [0, 1], let

α = α(η, ρ, ν) := min
(x,y,z)∈F

(1 − ν)h0(x, y, z) + νh1(x, y, z)

1

4
(1 + cos x + cos y + cos z)

where

h0(x, y, z) =1 − 1

2π
(arccos(ρ cos f (x)) + arccos(ρ cos f (y))

+ arccos(ρg(x, y, z))),

408 D. XU ET AL.

h1(x, y, z) = (1 + cos x)(1 + cos y)

4
.

Then we have Lemma 3.1. Lemma 3.2 also holds for DSP. Restrict b ∈ [−1, 0]
and let

c =




α

1/4 − (bβ1 + β2)
if b ∈ [− 1

2 , 0],
3α

(bβ1 + β2) − b + (1 + b)2 − 4(bβ1 + β2)
if b ∈ [−1,− 1

2).

Han et. al. [11] showed the following lemma,

Lemma 4.2. If random variable z(b, c) fulfills its expectation, i.e., z(b, c) ≥ α +
c(bβ1 + β2), then

w(S̃) ≥ R(η, ρ, ν, b) · w∗, (4.2)

where

R(η, ρ, ν, b) =




α(1 − (1 + b)2)

1 − 4(bβ1 + β2)
if b ∈ [− 1

2 , 0],
α((1 + b)2/4 − b)

(bβ1 + β2) − b + (1 + b)2 − 4(bβ1 + β2)
if b ∈ [−1,− 1

2].

Finally, we solve the maximization problem

R = max R(η, ρ, ν, b)

s.t. 0 ≤ η, ρ, ν ≤ 1
−1 ≤ b ≤ 0.

(4.3)

We have played with Matlab 6.0 and find R = 0.6236 when η = 0.77, ρ = 0.88,
ν = 0.16, and b = −0.1797. At this case, α = 0.7687, γ = 0.9526, β1 = 0.5056,
β2 = 0.2400, and c = 7.6234. Together with Lemma 4.2 and Frieze and Jerrum
[5]’s analysis, we have the final result:

Theorem 4.3. The worst-case performance ratio of Algorithm 2.1 for the DSP
problem is at least 0.6236 for sufficiently large n.

5. Discussions

Obviously, all the asymmetric graph bisection problems, such as MAX n
2 -VERTEX-

COVER (MVC) and MAX n
2 -DIRECTED-UNCUT (DUC), may be considered

under the frame of Algorithm 2.1. Unfortunately, we find that an improved al-
gorithm for MVC or DUC could not obtained using the current techniques. The
reason is that mapping doesn’t benefit the balance between α and γ . If we adopt

IMPROVED APPROXIMATION ALGORITHMS 409

mapping, the decrease of γ counteracts the advantage of increase of α. That is to
say, the value of α is large enough and the most important thing is to increase the
value of γ .

The result of 0.6458 for MDB or 0.6236 for DSP is based on the bound of α

and τ2 for given η, ρ, and ν. However, α and τ2 are defined as the optimal values
of some non-convex optimization problems, and are computed by non-rigorous
numerical computations (cf. [3]). We utilize repeatedly the “fmincon” function of
Optimization Toolbox of Matlab 6.0 to calculate α and τ2 starting with more initial
points which are situated in the cube [0, π] × [0, π] × [0, π].

It is an interesting question how to adopt the idea of Halperin and Zwick (2000)
about using triangle inequalities to improve the bound of γ . But it seems too
complicate to analyze it.

Acknowledgments

The first author would like to thank Yinyu Ye for his useful comments and Qiaom-
ing Han and Jiawei Zhang for their helpful discussions on this paper. We also thank
Alexander Ageev, Uriel Feige, and Uri Zwick for kindly giving us their papers. Two
referees are also acknowledged for their valuable comments.

This work was partly supported by Chinese NSF grant 10271002 and National
973 Information Technology and High-Performance Software Program of China
with grant No. G1998030401. The first author gratefully acknowledges the support
of K. C. Wong Education Foundation, Hong Kong.

References

1. Ageev, A., Hassin, R., and Sviridenko M. (2001), An 0.5-approximation algorithm for the max
dicut with given sizes of parts, SIAM J. Discrete Math. 14, 246–255.

2. Bertsimas, D. and Ye, Y. (1998), Semidefinite relaxations, multivariate normal distributions,
and order statistics. In: Du, D. Z. and Pardalos, P.M. (eds.), Handbook of Combinatorial
Optimization (Vol. 3), pp. 1–19, Kluwer Academic Publishers.

3. Feige, U. and Goemans, M. X. (1995), Approximating the value of two prover proof sys-
tems, with applications to MAX 2SAT and MAX DICUT. In: Proceedings of the 3rd Israel
Symposium on Theory and Computing Systems, Tel Aviv, Israel, pp. 182–189.

4. Feige, U. and Langberg, M. (1999), Approximation algorithms for maximization problems
arising in graph partitioning, Manuscript and M. Sc. thesis.

5. Frieze, A. and Jerrum, M. (1997), Improved approximation algorithms for max k−cut and
max bisection, Algorithmica 18, 67-81.

6. Feige, U. and Seltser, M. (1997), On the densest k−subgraph problem, Technical Re-
port, Department of Applied Mathematics and Computer Science, The Weizmann Institute,
Rehovot.

7. Goemans, M. X. (1996), Mathematical programming and approximation algorithms, Lecture
given at the Summer School on Approximate Solution of Hard Combinatorial Problems,
Udine.

410 D. XU ET AL.

8. Goemans, M. X. and Williamson, D. P. (1995), Improved approximation algorithms for Max-
imum Cut and Satisfiability problems using semidefinite programming, Journal of ACM 42,
1115–1145.

9. Halperin, E. and Zwick, U. (2001), A unified framework for obtaining improved approxima-
tion algorithms for maximum graph bisection problems, Manuscript.

10. Han, Q., Ye, Y., Zhang, H., and Zhang, J. (2002), On approximation of Max-Vertex-Cover, to
appear in European Journal of Operational Research.

11. Han, Q., Ye, Y., and Zhang, J. (2002), An improved rounding method and semidefinite
programming relaxation for graph partition, Math. Program. 92, 509–535.

12. Lovasz, L. and Shrijver, A. (1990), Cones of matrices and setfunctions, and 0-1 optimization,
SIAM J. of Optimization 1, 166–190.

13. Mahajan, S. and Ramesh, H. (1999), Derandomizing approximation algorithms based on
semidefinite programming, SIAM J. Comput. 28, 1641–1663.

14. Nesterov, Y. (1998), Semidefinite relaxation and nonconvex quadratic optimization, Optimiz-
ation Methods and Software 9, 141–160.

15. Papadimitriou, C. H. and Yannakakis, M. (1991), Optimization, approximation, and complex-
ity classes, J. Comput. Syst. Sci. 43, 425–440.

16. Srivastav, A. and Wolf, K. (1998), Finding dense subgraphs with semidefinite programming.
In: Jansen, K. and Rolim, J. (eds.) Approximation Algorithms for Combinatorial Optimization,
pp. 181–191.

17. Ye, Y. (2001), A .699-approximation algorithm for Max-Bisection, Math. Program. 90, 101–
111.

18. Ye, Y. and Zhang, J. (2003), Approximation of dense- n
2 -subgraph and the complement of

min-bisection, Journal of Global Optimization 25, 55–73.
19. Zwick, U. (1999), Outward rotations: a tool for rounding solutions of semidefinite program-

ming relaxations, with applications to max cut and other problems. In: Proceedings of the 30th
Symposium on Theory of Computation (STOC), pp. 551–560.

